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Abstract—This paper considers predictive maintenance, which
is the task of predicting rare and anomalous events (typically,
system failures) using event logs data, which are series of time-
stamped symbolic codes emitted at regular or irregular intervals
by a monitored system. Our objective is to find small sets of codes
(called itemsets or patterns) that occur shortly before failures.
Current prediction methods either produce patterns at a high
computational cost or resort to kernel approaches which are often
difficult to interpret. We introduce Bayesian Pattern Feature
Discovery (BPFD), a new generic algorithm for pattern discovery.
Our method, based on a pattern mining technique, produces
informative and explainable features and is computationally
efficient. The performance of BPFD is highlighted on real-world
data sets, showing that enriching the feature space with the
discovered patterns improves significantly the prediction power
of a broad range of predictors and offers useful insight on the
predictive maintenance task.

Index Terms—Bayesian learning, pattern mining, predictive
maintenance, variational inference.

I. INTRODUCTION

Predictive Maintenance (PM) aims to anticipate critical
failures of large industrial systems to plan early and cost-
effective interventions. Since maintenance can amount from
15% to 70% of the total operational cost [1], PM is an
important task to study, with far-reaching applications for the
maintenance management of a number of industrial structures:
transportation network [2], power equipment [3], factory plant
[4]. Many fault-predicting procedures are based on event logs
that provide information on the monitored system’s health
status. Event logs typically consist of event codes emitted
at regular or irregular intervals. Formally, such data can be
seen as temporal point processes of symbols taken from a
finite dictionary. In that context, PM essentially amounts to
identifying characteristic sequences (or patterns) of symbols
that occur shortly before failures. The management of a
railway fleet illustrates particularly well the importance of
PM. SNCF, France’s main railway company, uses event logs
to predict failures of the train door system, one of the most
critical equipments of its rolling stock. Any malfunction leads
to the complete immobilization of the train and propagates
delays to a large portion of the transportation network.

This work’s main driver is to design an interpretable and
efficient machine learning pipeline to detect potential occur-
rences of breakdowns of rolling stocks.

The prediction procedure uses event logs, which are time-
stamped error codes et taken from a dictionary E of d distinct
codes. These events are collected and processed by on-board
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Fig. 1. Temporal aggregation of log-events (et1 , . . . , et6 ) over sliding
windows (T1, T2, T3). In red, events that occur in the period Ta before
yt7 are considered anomalous and labeled l = 1. The aggregation produces
the itemsets x1 = {et1 , et2 , et3}, x2 = {et2 , et3}, x3 = {et4 , et5 , et6}
and the labels l1 = 0, l2 = 0 and l3 = 1. The goal is to correctly predict
the labels li from the itemsets xi.

equipment according to dedicated rules to which the end-user
does not have access. These codes are produced during events
deemed relevant by the manufacturer (for instance exceeding
the threshold of an electrical signal or a malfunction).

Procedures that make use of log events are particularly
challenging since there is no natural order or distance on the
space of symbols, thus making most machine learning models
unsuitable. This issue can be overcome by kernel methods
[5] but these approaches are difficult to interpret, which is a
requirement for a predictive solution to be used in an industrial
context. Another common strategy consists in transforming
the prediction task into a binary classification task. In a nut-
shell, the signal is aggregated over sliding temporal windows
(possibly overlapping) of fixed size. Features are simply the
set of collected events within the window (called itemsets).
For a given user-defined threshold period Ta > 0, a window
is considered as anomalous (label “1”) if it contains codes
emitted in the period Ta before a failure, and normal (label
“0”) otherwise. This aggregation procedure is schematically
illustrated on Figure 1. Even though popular [6], classification
based solely on this construction is often unable to capture
critical patterns of events that can be highly relevant in PM.

To tackle this issue, one can resort to methods from the
related domains of Frequent Itemset Mining (FIM) and Dis-
criminative Pattern Mining (DPM). FIM is the task of finding
the most common patterns of a set in an exponentially large
class of all possible combinations [7]. A famous application
is the shopper recommendation problem, where the goal is
to find the most common products that are bought together.



DPM aims at searching for the set of patterns that best
differentiate two subsets of a data set in the sense that a pattern
occurs significantly more frequently in one of the classes. This
framework has many applications such as consumer behavior
analysis, RNA and DNA gene expression, subgraph mining,
and anomaly detection. Generally, DPM algorithms start with
a FIM step, where the most frequent itemsets are identified,
then compute a statistical test for each itemset to determine if
its presence is significantly different between two subsets [8].
This often leads to an exponential number of statistical tests
to perform and make many DPM methods computationally
intensive.

In this work, we propose a Bayesian approach to explore
the space of frequent itemsets in an efficient way. More
precisely, we use a Bayesian Mixture Model to infer with a
low computational cost the both frequent and discriminative
itemsets. Also, we offer empirical proof of the general use of
such discriminative patterns by considering them as features
for the PM task. This results in a method that can extract an
interpretable set of attributes and significantly improve any PM
algorithm. Moreover, the Bayesian generative model allows
for computing the posterior distribution and estimating the
confidence intervals. Finally, additional expert-knowledge can
be naturally introduced in the model via the choice of prior
[9].To the extent of our knowledge (and as pointed in [8]), it is
the first Bayesian approach towards DPM, and there has been
no investigation of using pattern discovery methods based on
discriminant pattern to the Predictive Maintenance task.

In Section II, the basic concepts of FIM are introduced.
Section III presents our approach to the DPM problem and
application to signals of log events. The experiments are
described and commented in Section IV.

II. BACKGROUND

This Section introduces the concepts and main approaches
of FIM and DPM.

A. Frequent Itemset Mining

Let E = (e1, . . . , ed) the base dictionary of events and
E = P(E) the collection of all 2d possible patterns on E.
The windowing procedure described in Fig. 1 transforms the
sequence of log events into a database D = {(xi, li)ni=1} of
elements of E × {0, 1} with the binary variable l indicating
if a breakdown event occurred soon after the code emission.
Note that the set E can be identified with the d-dimensional
hypercube X = {0, 1}d, leading to the equivalence with the
binary representation described in Fig. 2. We also denote D0

(respect D1) the samples in D associated with the target value
l = 0 (respect l = 1) so that D = D0 ∪ D1.

The support of a pattern x ∈ E is defined as the number
of samples of the database in which any pattern greater (with
respect to ⊆) than x appears. Formally,

s(x) =
1

n

n∑
i=1

1x∈{z∈E|xi⊆z}. (1)

TABLE I
CONTENGENCY TABLE FOR A PATTERN E AND A DATABASE

D = D0 ∪D1 TO COMPUTE pF .

x xc Size
D1 s1(x) |D1| − s1(x) |D1|
D0 s0(x) |D0| − s0(x) |D0|

Column totals s(x) n− s(x) n

In the same fashion, we denote sj(x) the support of the
pattern x ∈ E in Dj . In the context of predictive maintenance,
s1(x) represents the number of times that a pattern of events
appears close to a breakdown. Given a threshold µ ∈ [0, 1],
the FIM task consists of finding the collection T H(E ,D, µ) of
all frequent patterns in E defined has having support greater
or equal than µ. The computation of such a collection is
challenging since any algorithm has to explore a space size of
|E| = 2d elements and will exhibits exponential complexity
O(n2d). The key for pruning the set of possible patterns
is the anti-monotonicity constraint which states that every
sub-pattern of a frequent pattern is frequent. This approach
spans a class of problems referred to as the Frequent Itemset
Mining algorithms that can be used to extract T H(E ,D, µ) at
reasonable computational cost [7], [10].

B. Discriminative Pattern

The classical DPM pattern procedure requires to perform
a FIM procedure as described in Section II-A to obtain
T H(E ,D0, µ) and T H(E ,D1, µ) and compute the contin-
gency table [8]. Table I describes the complete contingency
table for a pattern x ∈ E as the record of the support of x and
xc (which is the complementary pattern such that x∪xc = E)
in D0 and D1. For instance, Fig. 2 displays the occurrence of
each code in E in the sample i aggregated over the window Ti.
The pattern x = {e7, e8} produces a contingency table with
s0(x) = s1(x). Since the data set D is the result of a stochastic
process, one needs to design a statistical test to evaluate the
statistical significance of the discrepancy between s0(x) and
s1(x). The hypergeometric model with a Fisher test is the most
commonly used framework for finding statistically significant
pattern. Under the null hypothesis, the probability of observing
the contingency table associated with x with s1(x) = a is

pF (a) =

(|D1|
a

)( |D0|
s(x)−a

)(
n

s(x)

) . (2)

The p-value is then obtained as the probability of observing a
contingency table at least as extreme as the observed one.
Since, in the worst case, a number of 2d patterns must
be considered, the probability of false discovery increases
drastically and requires corrections. This is the goal of recent
work on DPM algorithm such as LAMP and SPuManTe [11].

Nevertheless, all the above methods require the costly
computation of T H(E ,D0, µ) and T H(E ,D1, µ) and can be
challenging to interpret as the choice of the threshold for the
p-value is a notoriously difficult problem that leads to misuses
[12].
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Fig. 2. An example data set of events D = D0 ∪ D1. Row corresponds to items in E = (e1, . . . , e9) and columns to n = 20 samples. A blue colored
area indicates that the item is present in the sample column considered. In this data set, the pattern x = {e7, e8} in E seems to be nondiscriminative since
s0(x) = s1(x). On the contrary, the pattern z = {e3, e4, e5} appears to be specific to the positive class l = 1.

III. METHOD

This Section introduces a new Bayesian approach for the
DPM problem and its application to the signal of log events.

A. Bayesian interference for pattern discovery

Once the signal of error codes has been processed according
to the procedure described in Fig. 1, we need to choose
a generative model for the pattern database D. We believe
that a good trade-off is achieved between generality and
complexity with a model assuming that the training data set is
the result of a Bayesian Mixture Model (BMM) process with
K mixture components [13]. This model assumes conditional
independence given the mixture class and that the database
is the result of sampling from multiple distributions pk. The
final number of parameters to evaluate for a K Bayesian
Mixture Model is K × d. We stress out that the choice of K
controls the complexity of the model. Taking the number of
components K to be large approximates the most exhaustive
choice, which is the fully correlated Bernoulli model with
2d parameters and is computationally intractable for even a
moderate dimension d. The simple case of K = 1 is the
independent and homogeneous Bernoulli model with i.i.d.
samples. Simple combinatory calculus gives a support function
which only depends on the length of the pattern. Intuitively,
it is similar to the experiment of throwing d identical coins
with probability θ0 and computing the probability of a given
arrangement with given a number of heads. The too simple
previous model assumes interchangeability on the elements
ei, complete independence between them and a similar dis-
tribution for all samples of the training data set. In the use
case of DPM, this approach has the advantage of allowing
computation of any quantity of interest; one computation is
needed to infer the parameters and all conclusions can be

drawn from it by sampling the posterior predictive distribution.
The following gives a formal definition of the model.

Let X = (x1, . . . ,xn) be an i.i.d.sample of the pattern in the
binary labeled database D = {(xi, li)}ni=1 with xi = (xij)

d
j=1

elements of {0, 1}d and suppose the underlying model is
a BMM with K components. For k ∈ {1, . . . ,K}, the
k-ith sampling distribution pk(xi|θk) depends only on the
parameter θk = (θkj)

d
j=1. Denoting λk the probability of

sampling from the k-th component with
∑K

k=1 λk = 1, the
global sampling distribution writes

p(xi|Θ,λ) =

K∑
h=1

λkpk(xi|θk), (3)

where Θ = (θk)Kk=1 and λ = (λk)Kk=1). The conditional in-
dependence hypothesis for each Bernoulli component applied
to the mixture distribution pk leads to

pk(xi|θh) =

d∏
j=1

θ
xij

kj (1− θxij

kj ).

Since it is unknown to which component k ∈ {1, . . . ,K} a
sample i belongs to, it is needed to introduce the unobserved
indicator wik defined by

wik =

{
1 if sample i drawn from the k-th component,
0 otherwise.

Knowing the mixture component parameter λ, the com-
ponent indicator wi = (wi1, . . . , wiK) for the sample i is



TABLE II
TEST ACCURACY, RECALL AND AUC 10× CROSS-VALIDATED FOR BPFD, PF AND BC CLASSIFIERS (WITH GRID-SEARCH HYPERPARAMETER TUNING) ON

DATASETS REPORTED IN TABLE III.

X Gradient Boosting Random Forest Light Gradient-Boosting Machine Categorical Boosting Linear Regression k-Nearest Neighbors
BC PF BPFD BC PF BPFD BC PF BPFD BC PF BPFD BC PF BPFD BC PF BPFD

ijcnn1
AUC 0.728 0.769 0.927 0.726 0.767 0.913 0.732 0.769 0.926 0.727 0.768 0.927 0.714 0.732 0.899 0.614 0.643 0.841

Accuracy 0.906 0.907 0.929 0.906 0.907 0.928 0.906 0.907 0.929 0.906 0.907 0.93 0.905 0.905 0.918 0.89 0.897 0.922
Recall 0.0398 0.0465 0.403 0.0411 0.0479 0.416 0.0238 0.0372 0.401 0.0413 0.0474 0.407 0 0.0002 0.245 0.106 0.105 0.419

F1 0.0742 0.0862 0.519 0.0762 0.0885 0.523 0.0455 0.0702 0.516 0.0765 0.0877 0.523 0 0.0003 0.362 0.154 0.16 0.505

cod-rna
AUC 0.776 0.496 0.815 0.776 0.496 0.815 0.776 0.496 0.815 0.776 0.496 0.815 0.765 0.495 0.813 0.706 0.5 0.764

Accuracy 0.718 0.667 0.775 0.718 0.667 0.775 0.717 0.667 0.775 0.718 0.667 0.775 0.713 0.667 0.774 0.688 0.591 0.739
Recall 0.588 0 0.383 0.585 0 0.386 0.592 0 0.384 0.588 0 0.384 0.512 0 0.364 0.483 0.231 0.516

F1 0.581 0 0.532 0.58 0 0.534 0.583 0 0.532 0.581 0 0.532 0.544 0 0.518 0.503 0.263 0.568

a9a
AUC 0.89 0.896 0.88 0.863 0.869 0.875 0.894 0.9 0.903 0.894 0.9 0.904 0.893 0.902 0.902 0.837 0.848 0.85

Accuracy 0.841 0.844 0.846 0.825 0.826 0.829 0.844 0.846 0.849 0.844 0.847 0.848 0.841 0.849 0.847 0.817 0.826 0.824
Recall 0.597 0.604 0.615 0.564 0.582 0.578 0.606 0.613 0.626 0.595 0.606 0.611 0.581 0.611 0.604 0.566 0.584 0.589

F1 0.643 0.649 0.658 0.607 0.616 0.619 0.651 0.656 0.666 0.646 0.654 0.66 0.637 0.659 0.655 0.597 0.616 0.617

Doors
AUC 0.707 0.691 0.736 0.713 0.707 0.753 0.706 0.697 0.739 0.722 0.715 0.749 0.635 0.629 0.637 0.557 0.574 0.574

Accuracy 0.643 0.629 0.679 0.655 0.645 0.686 0.647 0.637 0.681 0.663 0.657 0.684 0.6 0.592 0.597 0.546 0.551 0.551
Recall 0.614 0.608 0.642 0.594 0.585 0.608 0.595 0.577 0.619 0.569 0.56 0.592 0.652 0.674 0.648 0.545 0.526 0.526

F1 0.632 0.62 0.667 0.632 0.622 0.659 0.627 0.613 0.66 0.627 0.619 0.652 0.62 0.623 0.617 0.545 0.539 0.539

thus distributed as Multin(λ). Finally, the joint distribution is
derived as

p(X,W|Θ,λ) = p(W|λ)p(X|W,Θ)

=

K∑
k=1

λk

n∏
i=1

pk(xi|θk)wik .

The last step is to choose a proper prior distribution on
the parameters. The natural choice [9] is to respectively set
a Beta and Dirichlet distribution for the mixture probability
of occurrence Θ and the mixture parameters vector λ. For a
set of parameter Γ = (Θ,λ,K) associated with the Bayesian
Mixture Model M is summarized as follow

λ|α ∼ Dirichlet (α) ,

wi|λ ∼ Multin(λ),

θkj |β,γ ∼ Beta(β,γ),

xij |θkj ∼ Bernoulli(θkj).

(4)

B. The BPFD algorithm

The BPFD algorithm is based on choosing the model de-
scribed in Section III-A as a generative model for the samples
D and computing the odd ratio support to compare the patterns
between classes. The steps are described in the following.

a) Preprocessing: The first step is to transform the
sequential data to a binary matrix as described in Fig. 1. Note
that any continuous feature can be transformed into a multi-
categorical feature.

b) Inference: Set the hyperparameter α = ( 1
K , . . . ,

1
K ).

An Expectation Minimization [14] procedure is performed on
D0 and D1 to infer the set of parameters Γ0 and Γ1 associated
with the models M0 and M1.

c) Discriminant Pattern computation: The discrimina-
tive power of a pattern x ∈ E is evaluated through the odd
ratio support

r(y) =
p(M1 | x)

p(M0 | x)
(5)

=
p(M1)

p(M0)
× p(x | Γ1)

p(x | Γ0)
. (6)

d) Classification: The best discriminative patterns are
then added to the original training data set D and classification
is performed.

The main advantage of this automatic feature extraction
method is that it can be applied to any data and will return new
features that will often be easy to interpret. The method does
not require a threshold µ and can thus discover patterns that
the traditional approach would not explore. Additionally, since
the posterior sampling distribution can be simulated thanks
to 4, the confidence interval on the value of r(y) can be
directly obtained. Note that the potential imbalance between
the two classes is naturally taken into account by the prior
distribution effect [9]. Finally, the method is computationally
efficient since the EM algorithm converges rapidly to a local
minimum of the log posterior distribution.

IV. EXPERIMENTS

The BPFD was initially designed to tackle the problem
of Discriminative Pattern Mining for Predictive Maintenance
on rail stock. Nevertheless, this approach is general and
can be applied to any supervised classification problem. To
demonstrate the validity and effectiveness of our approach and
ensure full reproducibility, we evaluate the BPFD algorithm on
various widely used and publicly available1 data sets as well
as on the industrial Doors data set. In addition, the method is
compared across multiple classifiers against the Base Classifier

1https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html



TABLE III
CHARACTERISTIC OF THE EXPERIMENTAL DATASETS.

Name n d |D0|
|D1|

ijcnn1 91701 35 0.10
cod-rna 271617 17 0.5

a9a 32561 124 0.31
Doors 6349513 153 0.03

(BC) and the popular Polynomial Feature (PF) approach [15].
The results are reported in Table III.

A. Setup

The BPFD algorithm presented in Section III-B and the
Expectation-Minimization procedure are implemented using
the Tensorflow 2.4 and Python 3.8. The experiments run on a
Quad-core Intel i7 10th Gen @ 2.5 GHz. The source code and
complementary experiments, including additional classifiers
and data sets, are available online2 for reproducibility.

B. Experiments

a) Data sets: The BPFD algorithm is tested on three pub-
lic data sets commonly used for benchmark: ijcnn1 consists
of binarized maintenance data, cod-rna is a table of labeled
strains of RNA and a9a is a record of census data to predict
income of a household. The Doors data set has been provided
by the French National Railway Company and consists of a
database of log-events emitted by 143 trains’ doors collected
over twenty-four months. For each data set, the number of
samples n, the size of the base dictionary d = |E| and the
class imbalance D0

D1
is reported in Table III.

b) Feature Discovery: We consider the 10× cross-
validated F1, Area Under the Curve (AUC), Recall and Accu-
racy metrics to evaluate the improvement over the classifiers
reported in the result Table II with 70%−30% train-test split.
In particular, the proposed approach improves the overall AUC
score for almost all data sets and classifiers considered. For
instance, the ijcnn1 experiment exhibits an AUC of 0.927 for
the Extreme Gradient Boosting (XGB) classifier whereas the
vanilla approach scores at 0.769. On all data sets, the gain
seems particularly significant for the Recall metrics. It seems
that the discriminating pattern mined allows the classifier to be
more sensitive. This is particularly important in the Predictive
Maintenance domain where false negatives are generally the
most costly type error that can be made.

c) Discriminative Patterns: BPFD is compared with state-
of-the-art SPuManTe [11] test and retrieve most of the patterns
with comparable significance level. These patterns revealed
to be very informative about the link between a breakdown
and pattern of code emission as well as explaining why a
given algorithm would produce an incorrect prediction. As
an example, in the case of Doors fault prediction, the Base
Classifier would typically raise the probability of breakdowns
after a manual blocking of a door by the onboard personnel
represented by the event em = {”Locking Door”}. Our

2https://github.com/amirdib/bpfd

approach shows that some patterns that indicate whether this
blocking is intended or not. For instance, the pattern x =
{”Locking Door”, ”Unlocking Door”} is not interpreted
as an alert with BPFD as it is likely to be a handling error.
More complex events have been extracted and their relevance
validated with maintenance experts.

V. CONCLUSION

In this work, we introduced a new algorithm for DPM and
derived a Feature Discovery method to improve performance
of any classifier in the supervised learning framework. This
method is tested on various real-world and production data.
In addition to the metric score improvement, our approach
offers explainable insights on the classification task. Some
extensions of this work could include using the bread-stick
model to alleviate the need for a mixture parameter K. The
present framework can easily be extended to multi-categorical
classification. We plan to consider it in future work.
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